Chem. Ber. 101, 2256-2267 (1968)

Brunhilde Armer und Hubert Schmidbaur

Siloxanverbindungen des Aluminiumboranats

Aus dem Institut für Anorganische Chemie der Universität Würzburg

(Eingegangen am 29. Dezember 1967)

Bedingungen nicht existenzfähig.

Die Reaktion von Trimethyl- und Triäthylsiloxy-aluminium-dichlorid (1a,b) mit Lithiumboranat in Äther führt unter LiCl-Abspaltung zu Trimethyl- bzw. Triäthylsiloxy-aluminium-bis-boranat, R₃SiOAl(BH₄)₂, R = CH₃, C₂H₅. Diese Verbindungen (2a,b) bilden dimere Moleküle mit Al OAl-Vierringsystemen und hexakoordinierten Aluminiumatomen. Bei Einsatz der halben Menge LiBH₄ entstehen aus 1a,b die zugehörigen Trialkylsiloxy-aluminium-chlorid-boranate R₃SiOAlCl(BH₄), in denen die Aluminiumatome pentakoordiniert vorliegen (3a,b). Ausgehend von Trimethylsiloxy-aluminium-chlorid-hydrid (4) und LiBH₄ entsteht dimeres Trimethylsiloxy-aluminium-hydrid-boranat (5) R₃SiOAlH(BH₄), bei dem durch Spektraldaten der deuterierten Verbindung ein rascher Austausch von AlH-und BH₄-Wasserstoffatomen nachgewiesen werden konnte (7). Aus 2a und 5 wird durch Trialkylamine und -phosphine Monoborin abgespalten und zu Amin- und Phosphinboranen gebunden. Dabei hinterbleiben Siloxy-aluminium-hydrid-boranate bzw. -dihydride (5 oder 8). Die Umsetzung von 2a mit Trimethylchlorgerman liefert Trimethylgerman, Diboran und 1a. Die Reaktion mit Trimethylsilanol führt zu Wasserstoff, Diboran und Tris-trimethylsiloxy-aluminium (10). Trialkylsiloxy-gallium-boranate und -hydride sind unter vergleichbaren

In der jüngsten Zeit hat das Interesse an der Chemie des Aluminiumboranats wieder stark zugenommen ¹⁻⁴⁾. Abgesehen von Koordinationsverbindungen des Aluminiumboranats²⁾ ist jedoch über funktionelle Derivate dieser Verbindung ^{1,5)} noch immer sehr wenig bekannt. Unter funktionellen Derivaten sollen Verbindungen verstanden werden, bei welchen eine oder zwei der Boranatgruppen von Al(BH₄)₃ gegen andere einwertige Reste ausgetauscht sind, also Al(BH₄)₂X bzw. Al(BH₄)X₂. Hiervon sind lediglich Vertreter mit X = H ausreichend charakterisiert¹⁾.

H. Nöth und E. Wiberg geben in "Fortschritte der Chemischen Forschung", Band 8, Nr. 3, S. 323-436, Springer-Verlag Heidelberg Berlin 1967, eine Zusammenfassung über die Chemie der Aluminiumwasserstoffverbindungen.

²⁾ P. H. Bird und M. G. H. Wallbridge, J. chem. Soc. [London] 1965, 3923; N. A. Bailey, P. H. Bird und M. G. H. Wallbridge, Chem. Commun. 1965, 438.

³⁾ P. C. Maybury und J. C. Larrabee, Inorg. Chem. 2, 885 (1963).

⁴⁾ P. C. Maybury und J. E. Ahnell, Inorg. Chem. 6, 1286 (1967).

⁵⁾ E. L. Muetterties, Herausgeber, "The Chemistry of Boron and its Compounds", J. Wiley & Sons, New York 1967.

Im Rahmen von Untersuchungen über Heterosiloxane^{6,7)} haben wir auch Boranat-Verbindungen von Alumosiloxanen studiert, über die hier berichtet wird. Solche Siloxy-aluminium-boranate waren bisher ebensowenig beschrieben worden wie die entsprechenden Alkoxy-Verbindungen. Zwar haben *Nöth* und *Suchy*⁸⁾ kürzlich bei der Zersetzung von Tetrahydrofuran-Addukten des HAl(BH₄)₂ als Folge einer THF-Ringspaltung überraschend ein n-Butyloxy-aluminium-bis-boranat beobachten können, doch blieb dieser Befund ein Einzelbeispiel.

Als erste Siloxy-aluminiumhydrid-Verbindungen konnten vor einigen Jahren ein Trimethylsiloxy-aluminium-chlorid-hydrid [(CH₃)₃SiOAlHCl]₂ und ein Trimethylsiloxy-aluminium-dihydrid [(CH₃)₃SiOAlH₂]₂ erhalten werden⁹). Da die Alumosiloxangruppierung offenbar einen stabilisierenden Einfluß in diesen Aluminiumhydriden ausübte, schien es wünschenswert, diese Ergebnisse durch Angaben über entsprechende Boranate zu erweitern.

Trialkylsiloxy-aluminium-bis-boranate

Darstellung

Ein Zugang zu Verbindungen des Typs $R_3SiOAl(BH_4)_2$ ist von den Trialkylsiloxyaluminium-dihalogeniden $R_3SiOAlX_2$ her gegeben, über deren Struktur und Reaktivität eingehend berichtet wurde $^{10-12)}$. Die Umsetzungen von Trimethyl- und Triäthylsiloxy-aluminium-dichlorid ($\mathbf{1a},\mathbf{b}$) mit Lithiumboranat in Diäthyläther bei Raumtemperatur führen unter Lithiumchloridabscheidung glatt zu den gewünschten Trimethyl- und Triäthylsiloxy-aluminium-bis-boranaten $\mathbf{2a},\mathbf{b}$.

a: R = CH_3 **b**: R = C_2H_5

⁶⁾ H. Schmidbaur, Angew. Chem. 77, 206 (1965); Angew. Chem. internat. Edit. 4, 201 (1965).

⁷⁾ F. Schindler und H. Schmidbaur, Angew. Chem. **79**, 697 (1967); Angew. Chem. internat. Edit. **6**, 683 (1967).

⁸⁾ H. Nöth und H. Suchy, J. organometall. Chem. 5, 197 (1966). Vgl. dazu auch: E. C. Ashby und W. E. Forster, J. Amer. chem. Soc. 88, 2348 (1966).

⁹⁾ H. Schmidbaur und F. Schindler, Chem. Ber. 97, 952 (1964); Angew. Chem. 75, 1115 (1963); Dissertat. F. Schindler, Univ. Marburg 1964.

¹⁰⁾ H. Schmidbaur, H. Hussek und F. Schindler, Chem. Ber. 97, 255 (1964); dort weitere Literatur.

¹¹⁾ M. Bonamico, G. Dessy und C. Ercolani, Chem. Commun. 1, 24 (1966).

¹²⁾ M. Bonamico und G. Dessy, J. chem. Soc. [London] A 1967, 1786,

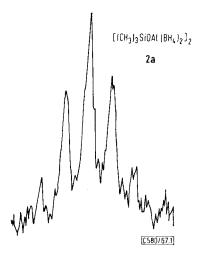
2a und 2b fallen als kristalline und unzersetzt sublimier- bzw. destillierbare Substanzen an, deren Zusammensetzung analytisch gesichert ist. Molekulargewichtsbestimmungen bestätigen das doppelte Formelgewicht [R₃SiOAl(BH₄)₂]₂, wie es auch für 1a,b gefunden wird ¹⁰ (Tab. 4).

Struktur

Die Infrarotspektren von **2a** und **2b** (Tab. 1) zeigen für die Trialkylsiloxygruppierungen jeweils Bandenzüge, wie sie nur in solchen Verbindungen gefunden werden, bei denen diese Struktureinheiten eine *Brücken*funktion erfüllen ^{9, 10, 13, 14)}. Hier fällt vor allem die langwellige Lage von νSiOAl₂ bei 769 bzw. 760/cm ins Gewicht. Dieser Befund wird unterstrichen durch die mehr oder weniger deutliche Verschiebung der Protonensignale der R₃Si-Gruppen nach niedrigeren Feldern im ¹H-NMR-Spektrum. Endständige Siloxygruppen erscheinen im NMR-Spektrum gegenüber brückenständigen bei höheren Feldstärken ^{15,16)} (δCH₃ im Versuchsteil).

Die bor- bzw. aluminiumständigen Wasserstoffatome erscheinen im ¹H-NMR-Spektrum erwartungsgemäß²⁻⁵⁾ mit breiten, wenig aufgelösten Signalgruppen, die sich über mehrere ppm hinziehen. Diese Beobachtung findet eine einleuchtende Erklärung in den hohen Quadrupol- und Spinmomenten der Bor- und Aluminiumkerne, möglicherweise aber auch in sehr raschen Austausch- bzw. Platzwechselvorgängen (s. u.).

Die IR-Spektren erlauben demgegenüber ohne Schwierigkeiten eine Aussonderung von Banden, die sich sowohl H₂B- wie auch BH₂Al-Struktureinheiten zweifelsfrei zuordnen lassen (Tab. 1). Damit ist das auschließliche Vorliegen von $\frac{H}{H}$ B $\frac{H}{H}$ Al-Strukturelementen gesichert (Formel 2a,b). Daß diese Gruppierungen jedoch wie im Aluminiumboranat²⁻⁴⁾ ihre Wasserstoffatome nicht in den beiden unterschiedlichen Positionen fixiert enthalten (brücken- bzw. endständige Wasserstoffatome), sondern sie in einem raschen Äquilibrierungsprozeß auszutauschen vermögen, geht aus dem ¹¹B-NMR-Spektrum hervor (Abbild. 1). Hier tritt ein symmetrisches 1:4:6:4:1-Quintett auf, das die (im Zeitmittel) strukturelle Identität aller Boranat-H-Atome ausweist²⁻⁴⁾.


Aufgrund der spektroskopischen Ergebnisse wären die Formeln 2a,b dahingehend zu präzisieren, daß offenbar beide Aluminiumatome die Koordinationszahl sechs aufweisen, da je zwei Sauerstoff- und vier Wasserstoffatome Brückenfunktionen zu den Silicium- bzw. Boratomen erfüllen. Die Frage, ob dabei für die sechs Liganden oktaedrische oder prismatische Konfiguration bevorzugt wird, muß offen bleiben.

¹³⁾ H. Schmidbaur und F. Schindler, Chem. Ber. 99, 2178 (1966).

¹⁴⁾ F. Schindler, H. Schmidbaur und U. Krüger, Angew. Chem. 77, 865 (1965); Angew. Chem. internat. Edit. 4, 876 (1965).

¹⁵⁾ H. Schmidbaur, Chem. Ber. 96, 2692 (1963).

¹⁶⁾ H. Schmidbaur, J. organometall. Chem. 1, 28 (1963); H. Schmidbaur und M. Schmidt, J. Amer. chem. Soc. 84, 1069 (1962).

Abbild. 1. ¹¹B-NMR-Spektrum von Trimethylsiloxy-aluminium-bis-boranat (2a) in Benzol (30°)

Trialkylsiloxy-aluminium-chlorid-boranate

Bei Einsatz von nur der Hälfte des erforderlichen LiBH₄ in die Umsetzung nach Gl. (1) werden aus 1a,b anstelle von 2a,b Trimethyl- und Triäthylsiloxy-aluminium-chlorid-boranat (3a und 3b) gebildet:

$$[R_{3}SiOAlCl_{2}]_{2} \xrightarrow{+2 \text{ LiBH}_{4}} R_{3}Si-O O-SiR_{3}$$

$$1a, b$$

$$a: R = CH_{3} O1 H H 3a, b$$

$$b: R = C_{2}H_{5}$$

$$H H A C1$$

$$A1 H H 3a, b$$

3a und 3b sind ebenfalls als kristalline, destillierbare Substanzen isolierbar (Tab. 4). Analysen und Molekulargewichte bekräftigen die Bruttoformeln [R₃SiOAlClBH₄]₂.

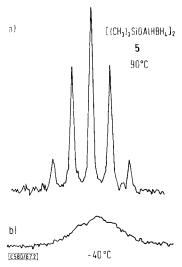
Struktur

Nach Maßgabe von IR- und ¹H-NMR-Spektren kann auch bei **3a,b** an einer über Sauerstoffatome verbrückten Vierringstruktur kein Zweifel bestehen. Die beiden BH₄-Gruppen scheinen wie bei **2a,b** an je ein Aluminiumatom über 2 H-Brücken gebunden zu sein (Tab. 1).

Da im Ausgangsmaterial **1a,b** die vier Halogenatome symmetrisch oberhalb und unterhalb der Si-O-Si-Ebene angeordnet sind ¹¹, ergeben sich für die neu eintretenden Boranatliganden zwei stereochemisch unterschiedliche Anordnungen: Eine *trans*-Form, bei der die Boranatgruppen auf verschiedenen, und eine *cis*-Form, bei der sie auf gleichen Seiten der genannten Ebene angeordnet sind. Welche dieser

Geometrien verwirklicht ist, kann vorerst nicht entschieden werden. Die Spektren deuten aber an, daß jedenfalls kein Gemisch beider, sondern nur eine davon vorliegt (vermutlich die *trans*-Form). Die Aluminiumatome besitzen damit in **3a,b** die Koordinationszahlen *fünf*. Die im Prinzip ebenfalls denkbare isomere Form, bei der *ein* Aluminiumatom *beide* BH₄-Gruppen trägt, halten wir für unwahrscheinlich. Hier sollten sich deutlichere IR-Analogien zu **2a,b** zeigen.

Trimethylsiloxy-aluminium-hydrid-boranat und -deuterid-boranat


Die Existenz des eingangs erwähnten Trimethylsiloxy-aluminium-chlorid-hydrids⁹⁾ (4) ließ uns auch nach einem entsprechenden Hydrid-boronat 5 suchen. Die Verbindung 5 ist in der Tat aus 4 und LiBH₄ leicht zugänglich und als destillierbare Flüssigkeit isolierbar:

Struktur

Nach einfachen Überlegungen sollte 5 eine zu 3a,b analoge Struktur zukommen. IR- und NMR-Spektren scheinen dies im wesentlichen zu bestätigen. Nach ¹H- und ¹¹B-NMR-Spektren tritt jedoch bei 5 offenbar ein zusätzliches Hydridaustausch-Phänomen auf, in das nicht nur die vier Boranatwasserstoffatome, sondern auch das Al-H-Wasserstoffatom mit einbezogen sind. Die breiten ¹H-Signale und das ¹¹B-Quintett der Raumtemperaturspektren zeigen bei tieferen Temperaturen Verbreiterungen und Koaleszenzerscheinungen, die auf ein teilweises Einfrieren dieses Austauschprozesses hindeuten. Die erzielte Temperatur von minimal –50° genügte jedoch nicht, um entsprechend vereinfachte Spektren zu erhalten (Abbild. 2).

Um einen eindeutigen Hinweis darauf zu erhalten, daß Al-H- und B-H-Wasserstoffe in 5 tatsächlich einem Austausch unterliegen, haben wir entsprechende Versuche mit deuteriertem 4 unternommen. Nach der bekannten Vorschrift $^{9)}$ für 4 wurde aus 1a und LiAlD₄ in 34 proz. Ausbeute Trimethylsiloxy-aluminium-deuterid-chlorid (6) synthetisiert. 6 erwies sich laut IR- und NMR-Spektren als Al-D-Analoges von 4 (vgl. Experimentalteil). Schmelz- und Siedepunkt von 4 und 6 differieren ebenfalls nur wenig.

Die Umsetzung von 6 mit LiBH₄ lieferte die gesuchte partiell deuterierte Verbindung 7, jedoch zeigten deren IR-Spektren sofort, daß der Deuterierungsgehalt nicht nur auf das Strukturelement Al-D beschränkt war. Es lagen vielmehr auch partiell deuterierte BH₄-Gruppen vor. Neben Al-D- waren eindeutig auch Al-H-Valenzschwingungen nachweisbar. Damit ist gezeigt, daß die fünf Wasserstoffatome einer

Abbild. 2. ¹¹B-NMR-Spektrum von Trimethylsiloxy-aluminium-hydrid-boranat (5) bei $+90^{\circ}$ (a) und -40° (b). Für Abbild. 2b) wurde 5 in n-Hexan gelöst

 $AlH(BH_4)$ -Gruppe einem raschen Austausch $AlD(BH_4) \rightleftharpoons AlH(BH_3D)$ unterliegen. Die übrigen Charakteristika der IR-Spektren von 5 und 7 unterscheiden sich nur unwesentlich (Tab. 1, 2).

Abbau- und Substitutionsreaktionen

Die Abspaltung von Monoborin-Bauelementen aus 2a gelingt mit Hilfe von Triäthylund Tributylamin ebenso wie mit Trimethylphosphin. Dabei werden entsprechende Amin- bzw. Phosphinborane gebildet (Gl. (4)). Die Isolierung der Nebenprodukte 5 bzw. von [(CH₃)₃SiOAlH₂]₂ (8) stößt jedoch wegen Schwierigkeiten bei der destillativen Auftrennung auf Hindernisse.

Tab. 1. IR-Spektren der Verbindungen 2a,b, 3a,b und 5 (cm⁻¹)

2 a	2 b	3a	3 b	5	Zuordnung
3000-2800	3000-2800	3000-2800	3000-2800	_	Nujol
	ar name			2955 m 2895 Sch	vCH ₃
2520 st	2522 st	2520 st	2525 m	2515 m	$v_{as}BH_2$
2455 st	2457 st	2455 m	2455 sw	2455 m	v _s BH ₂
2225 sw 2160 Sch	2222 Sch —		_	_	νΑlH ₂ Β
2125 Sch	2130 st	2140 st, b	2145 st, b	2145 st, b	
2120 st —	2102 m			1915 st	ν A lH
	1922 ssw 1902 ssw	and the second	_		
1500-1350	1500 – 1350	1500 – 1350	1500-1350	_	Nujol
MA THE		_ _ 	 	1475 m 1415 m 1335 sw	$\delta_{as}CH_3$
1280 ssw	1243 st		1240 st	_)]
1262 st	_	1260 st		1260 st	δ _s CH ₃ , CH ₂ CH ₃
1258 Sch		1180 Sch 1150 Sch	1180 ssw 	_)
1114 st 	1113 st	1112 m 1075 st	1110 sw 1075 sw	1113 m 1073 sw, b	δBH_2
 	1075 sw 1060 Sch	_	 1015 Sch) vC-C
	1002 st 962 ssw	_	1000 st 965 sw		
980 sw	_	_		 853 Sch	$ ho BH_2$
855 sst		850 sst	**************************************	847 sst	ρ ₁ CH ₃
769 sst	775 Sch 760 sst 730 Sch	785 sst	755 sst 730 Sch	785 sst 770 Sch	νSiOAl ₂
766 st		770 Sch	-	770 Sch	$\rho_2 CH_3$
695 sw	705 m	700 sw	705 sw	(670 m, b)	ν _{as} SiC ₃
620 st(u.a.)		627 st	(685 sw)	(640 m, b)	ν _s SiC ₃
540 st 500 Sch	625 m, b 555 m, b	572 st 480 Sch	640 st 565 st	610 st 442 sw	_
435 sw	480 Sch	460 Sch	363 St 482 SW	774 SW	_
	-	450 sw	465 sw	distant.	_

Tab. 2. IR-Spektren der deuterierten Verbindungen 6 und 7 (cm⁻¹)

6	7	Zuordnung
2960 m	2952 m	ν _{as} CH ₃
2910 Sch	2903 Sch	v_sCH_3
and the second	2505 m	$v_{as}BH_2$
-	2445 m	$v_s BH_2$
a. esser.	2145 m, b	$vAlH_2B$
-	1905 m	ν A lH
	1575 sw	$\nu AlD(H)B$
1400 m	1385 m	νAlD
1430 Sch	1455 sw	$\delta_{as}CH_3$
1370 Sch	1415 sw	
1342 sw	1325 Sch	-
1280 Sch		
1262 st	1260 st	$\delta_s CH_3$
1080 sw		
	1110 sw	$\delta \mathrm{BH}_2$
	1070 m	
910 Sch	parage	
852 sst	845 sst	$\rho_1 CH_3$
798 sst	787 sst	$vSiOAl_2$
770 m	770 Sch	$\rho_2 CH_3$
765 Sch		
698 sw	670 sw, b	$v_{as}SiC_3$
623 m	645 Sch	a)
578 m	612 st	Program
530 m	555 ssw	_
501 m	495 sw	****
438 ssw	440 ssw	

a) Die Banden des langwelligen Bereichs sind hier und in Tab. 1 bisher nicht zugeordnet.

Das gebildete Trimethylsiloxy-aluminium-dihydrid (8) fiel hier, wie bei anderen Synthesen⁹⁾, als Polymeres an. Das Dimere ist offenbar nur Zwischenprodukt, das allenfalls mit Schwierigkeiten isolierbar ist⁹⁾.

Substitutionsreaktionen laufen demgegenüber wesentlich eindeutiger und übersichtlicher ab. Die Umsetzung von 2a mit Methyllithium (Gl. (5a)) liefert unter LiBH₄-Abspaltung Trimethylsiloxy-dimethyl-aluminium (9)^{13, 16)}. Trimethylchlorgerman, nicht aber Trimethylchlorsilan, vermag sämtliche Boranatgruppen in 2a durch Chloratome zu substituieren. Neben 1a werden Trimethylgerman und Diboran gebildet. (Es ergab sich kein Anhaltspunkt für die Existenz eines Trimethylgermanylboranats (CH₃)₃GeBH₄!) Mit (CH₃)₃SiCl tritt überhaupt keine Umsetzung ein. Von Trimethylsilanol wird 2a unter Freisetzung von Wasserstoff und Diboran in Tris-trimethylsiloxy-aluminium (15) (10) übergeführt (Gl. (5c)).

Der Verlauf dieser Umsetzungen (5a)—(5c) zeigt, daß an den Siloxy-aluminium-bisboranaten (2) Substitutionsreaktionen unter Erhalt des viergliedrigen Ringes möglich sind. Desgleichen ist eine Abspaltung von BH₃-Einheiten ohne Veränderung des Grundskeletts zu bewerkstelligen.

Zur Existenz von Trimethylsiloxy-gallium-boranaten

Die, abgesehen von wenigen Ausnahmen $^{17-19}$), nur sehr geringe Stabilität von Derivaten des Galliumwasserstoffes ${\rm GaH_3^{20}}$) machte Untersuchungen über Gallium-Analoga von 2 und 3 nur insofern attraktiv, als ein stabilisierender Einfluß von Siloxygruppen auf die ${\rm Ga-H-Bindungen}$ nicht ausgeschlossen war. Umsetzungen von Trimethylsiloxy-gallium-dichlorid 21) mit Lithiumboranat und Lithiumalanat führen jedoch nicht zu den gesuchten Verbindungen, sondern verlaufen unter Abscheidung von metallischem Gallium und Freisetzung von Hexamethyldisiloxan in eine andere Richtung. Auch Kühlung auf -10° konnte die Galliumreduktion nicht verhindern. Der Einfluß von Trimethylsiloxygruppen reicht demnach nicht aus, ${\rm Ga-H-Bindungen}$ in einem Maße zu stabilisieren, daß die Verbindungen unter Normalbedingungen beständig werden.

Die Deutsche Forschungsgemeinschaft unterstützte diese Arbeiten in dankenswerter Weise durch ein Doktoranden-Stipendium an B. Armer. Den Farbenfabriken Bayer haben wir für die Überlassung von Trimethylchlorsilan zu danken.

Herrn Dr. K. E. Schwarzhans, München, und Herrn Dipl.-Chem. G. Hoch, Würzburg, danken wir für die Ausführung von ¹¹B-NMR- und ¹H-NMR-Spektren bei tiefen Temperaturen.

¹⁷⁾ J. J. Eisch, J. Amer. chem. Soc. 84, 3820 (1962).

¹⁸⁾ H. Schmidbaur, W. Findeiß und E. Gast, Angew. Chem. 77, 170 (1965); Angew. Chem. internat. Edit. 4, 152 (1965); H. Schmidbaur und H. F. Klein, Chem Ber. 100, 1129 (1967).

H. J. Schlesinger, H. C. Brown, G. W. Schaeffer, J. Amer. chem. Soc. 65, 1786 (1943).
 E. Wiberg und M. Schmidt, Z. Naturforsch. 6b, 172 (1951); 7b, 577 (1952); E. Wiberg,

²⁰ E. Wiberg und M. Schmidt, Z. Naturforsch. 6b, 172 (1951); 7b, 577 (1952); E. Wiberg, Th. Johannsen und O. Stecher, Z. anorg. allg. Chem. 251, 114 (1941).

²¹⁾ H. Schmidbaur und W. Findeiß, Chem. Ber. 99, 2187 (1966).

Beschreibung der Versuche

Allgemeines

Trimethyl- und Triäthylsiloxy-aluminium-dichlorid (1a,b) sind nach l. c. 10) aus Hexamethylbzw. Hexaäthyldisiloxan durch Spaltung mit Aluminiumchlorid erhältlich. Trimethylsiloxy-aluminium-chlorid-hydrid (4) ist nach l. c. 9) aus 1a und LiAlH4 zugänglich. Trimethylsiloxy-gallium-dichlorid ist das Produkt der Umsetzung von Galliumtrichlorid und Lithiumtrimethylsilanolat²¹⁾. Lithiumboranat und Lithiumalanat sowie Lithiumboranat-d4 sind käuflich. Hexamethyldisiloxan²²⁾ und Trimethylsilanol²³⁾ wurden durch Hydrolyse von Trimethylchlorsilan synthetisiert. Trimethylchlorgerman entsteht bei der Galliumtrichlorid-Spaltung von Tetramethylgerman²¹⁾. Die verwendeten Lösungsmittel waren gut getrocknet und gereinigt. Alle Umsetzungen wurden unter Ausschluß von Luft und Feuchtigkeit in einer trockenen Stickstoffatmosphäre durchgeführt. Gleiches gilt für die Präparation der spektroskopischen Proben und die Molekulargewichtsbestimmungen. Für die IR-Spektren stand ein Gerät Perkin Elmer 337 zur Verfügung. Die ¹H-NMR-Spektren entstammen einem Varian A 60 mit Einsatz für variable Temperatur, die ¹¹B-NMR-Spektren einem Varian HA 100²⁴). Es gelten die üblichen Fehlergrenzen.

Darstellung der Verbindungen 2a, b, 3a, b, 5 und 7

Allgemeine Vorschrift: Eine abgewogene Menge der benötigten Siloxankomponente (Tab. 3) wird in einem Mikro-Zweihalskolben mit Rückflußkühler und Tropftrichter in Diäthyläther unter magnetischem Rühren gelöst. Zu dieser Lösung werden langsam die entsprechenden Mengen an Lithiumboranat in Diäthyläther gegeben (Tab. 3). Im Laufe der angegebenen Reaktionszeit scheidet sich bei Raumtemp. sehr bald ein Lithiumchlorid-Niederschlag ab. Von diesem wird dekantiert, der Rückstand mit wenig Äther nachgewaschen und die vereinigten Filtrate i. Vak. vom Lösungsmittel befreit. Der Rückstand ist durch Destillation oder Sublimation i. Vak. zu reinigen (Tab. 3 und 4).

Eingesetzte Trialkylsiloxy- aluminium-halogenide		LiBH ₄		Äther	Reaktions- Zeit Temp.			Produkt		
g	Formel	mMol	g	mMol	ccm	Stdn.		g	Nr.	Ausb.
10.7	[(CH ₃) ₃ SiOAlCl ₂] ₂	28.6	2.51	115	150	6	25°	6.9	2a	82
15.6	$[(C_2H_5)_3SiOAlCl_2]_2$	34.2	3.40	156	150	6	25°	1.8	2 b	14
6.9	$[(CH_3)_3SiOAlCl_2]_2$	18.2	0.81	36.4	100	6	25°	3.9	3a	54
20.4	$[(C_2H_5)_3SiOAlCl_2]_2$	44.5	1.90	89.0	150	6	25°	3.1	3 b	16
8.0	[(CH ₃) ₃ SiOAlHCl] ₂	26.2	1.20	55.0	100	6	25°	4.4	5	62
6.7	[(CH ₃) ₃ SiOAlDCl] ₂	21.8	0.96	43.6	100	6	25°	3.0	7	52
7.8	[(CH ₃) ₃ SiOGaCl ₂] ₂	16.9	1.54	70.0	150	4	25°			-

Tab. 3. Ansätze und Ausbeuten der Synthesen von 2a, b, 3a, b, 5 und 7

²²⁾ R. O. Sauer, J. Amer. chem. Soc. 66, 1707 (1944).

²³⁾ L. H. Sommer, E. W. Pietrusza und F. C. Whitmore, J. Amer. chem. Soc. 69, 2282 (1964).

²⁴⁾ Anorganisch-chemisches Laboratorium der Techn. Hochschule München (Dr. K. E. Schwarzhans).

Tab. 4. Physikalische Konstanten, Molekulargewichte und Analysenwerte von 2a,b, 3a,b und 5

Nr.	Formel	Summenformel	Schmp. Sdp./Torr	MolGew. ²⁾	C	Analyse C H Alb)		
2a	[(CH ₃) ₃ SiOAl(BH ₄) ₂] ₂	C ₆ H ₃₄ Al ₂ B ₄ O ₂ Si ₂	111-112° (90-110°/1d)	Ber. 291.8 Gef. 297		11.74 11.25		=
2 b	$[(C_2H_5)_3SiOAl(BH_4)_2]_2$	$C_{12}H_{46}Al_2B_4O_2Si_2$	45-48° (120-124°/1)	Ber. 375.9 Gef. 365		12.33 11.71		_
3a	[(CH ₃) ₃ SiOAlClBH ₄] ₂	$C_6H_{26}Al_2B_2Cl_2O_2Si_2$	$68-70^{\circ}$ $(68^{\circ}/10^{\circ})$	Ber. 333.0 Gef. 359	_	_	21.29 21.50	
3 b	$[(C_2H_5)_3SiOAlClBH_4]_2$	$C_{12}H_{38}Al_2B_2Cl_2O_2Si_2$	39-41° (120-123°/1)	Ber. 417.1 Gef. 446	34.55 36.50		12.94 12.52	
5	[(CH ₃) ₃ SiOAlHBH ₄] ₂	$C_6H_{28}Al_2B_2O_2Si_2$	(44-46°/1°)	Ber. 264.1 Gef. 265		10.69 10.51		_
a) Kryoskop, in Benzol. b) Komplexometrisch. c) Nach Volhard. d) Sublimiert. e) $Sdp{0,1}$ 33-34° für [(CH ₃) ₃ SiOAlDBH ₄ ₂ .								

Ein entsprechender Ansatz mit $[(CH_3)_3SiOGaCl_2]_2$ führt, auch bei -10° , zur Abscheidung von *Galliummetall*. In der Lösung ist IR- und NMR-spektroskopisch *Hexamethyldisiloxan* nachweisbar. Das entweichende Gas enthielt neben *Wasserstoff* auch *Diboran*, das in Triäthylamin absorbiert und als entsprechendes Addukt nachgewiesen werden konnte (IR-Spektrum).

Reaktionen von 2a bzw. 5

Mit Triäthylamin: 2.2 g 2a (7.5 mMol) werden in 25 ccm Benzol mit 1.53 g $(C_2H_5)_3N$ (15 mMol) 2 Stdn. unter Rückfluß erwärmt. Destillative Aufarbeitung ergibt neben Lösungsmittel eine Fraktion vom Sdp.₁ 47–50°, in dem nach den IR- und NMR-Spektren Triäthylamin-boran und Trimethylsiloxy-aluminium-hydrid-boranat (5) nebeneinander vorliegen. Eine Trennung der beiden Komponenten gelang nicht. Gesamtmenge des Destillats 3.50 g. Vergleichsspektren lagen vor.

Mit Tributylamin: In gleicher Weise werden 3.2 g 2a (11.0 mMol) und 4.07 g $(n\text{-}C_4H_9)_3N$ (22.0 mMol) zur Reaktion gebracht. Die Destillation liefert hier zwei Produkte mit Sdp.₁ 39–42° und Sdp.₁ 84–86°. Ersteres besteht wieder zum größten Teil aus 5 (IR, NMR), letzteres stellt reines Tri-n-butylamin-boran dar (Vergleichsspektren). Ausb. an $(C_4H_9)_3N \cdot BH_3$: 2.64 g (60%). Die Natur der Nebenprodukte (~30%) ist unbekannt. Die Bildung von 8 wird nicht beobachtet.

Mit Trimethylphosphin: 2.4 g 2a (8.2 mMol) wurden wie oben mit 1.25 g $(CH_3)_3P$ (16.5 mMol) umgesetzt. Nach Entfernen des Benzols wird ein Sublimat (25°/1 Torr) von Trimethylphosphinboran erhalten (NMR, IR). Ausb. 1.18 g (81%). Als Rückstand verbleibt polymeres 8 (IR), wenn unverbrauchtes 2a (ca. 1 g) vorher bei 90°/1 Torr absublimiert wird.

Mit Methyllithium: 1.6 g 2a (5.5 mMol) in 20 ccm Diäthyläther werden mit einer äther. Lösung von Methyllithium versetzt (22 mMol). Es bildet sich ein Niederschlag von Lithiumboranat. Nach 1 Stde. kann davon dekantiert werden. Die Lösung enthält Trimethylsiloxy-dimethyl-aluminium (9), das bei Sdp.₁₂ 84° destilliert wird. Ausb. 0.8 g (49%).

Mit Trimethylchlorgerman: 2.3 g 2a (7.9 mMol) werden in 30 ccm Benzol langsam mit $4.85 \,\mathrm{g} \,(CH_3)_3 GeCl$ (31.6 mMol) versetzt. Dabei wird zügig ein Gasgemisch von Diboran und Trimethylgerman entwickelt. B_2H_6 wurde wieder als Addukt an $(C_2H_5)_3N$ abgefangen (IR-Spektrum). $(CH_3)_3 GeH$ kann ausgefroren werden (NMR-Spektrum). Die Lösung enthält 1a, das durch Sublimation bei $85-90^\circ/1$ Torr gereinigt wird (IR- und NMR-Spektrum; Ausb. $2.9 \,\mathrm{g} = 98\,\%$).

Ein entsprechender Ansatz von 1.6 g 2a (5.5 mMol) und 2.4 g (CH_3) $_3SiCl$ (22 mMol) zeigte selbst in siedendem Benzol keine Reaktion.

Mit Trimethylsilanol: 2.8 g 2a (9.6 mMol) in 30 ccm Benzol werden mit 3.5 g Trimethylsilanol (38.4 mMol) versetzt. Die sofort einsetzende Reaktion führt zur Entwicklung eines Gasgemisches von Wasserstoff und Diboran. Letzteres wurde in Triäthylamin absorbiert und dort als $(C_2H_5)_3N \cdot BH_3$ identifiziert. Die Lösung ergab nach Entfernen des Benzols und Sublimation 4.1 g Tris-trimethylsiloxy-aluminium (10) (88%).

Trimethylsiloxy-aluminium-deuterid-chlorid (6) und Trimethylsiloxy-aluminium-deuterid-boranat (7): Wie für das wasserstoffanaloge 4 beschrieben, ist 6 aus 25.4 g 1a (68 mMol) und 136 mMol einer äther. $LiAlD_4$ -Lösung darstellbar. Ausb. 7.1 g (34%), Schmp. 24–26°, Sdp._{0.1} 33–34° (IR-Spektrum siehe Tab. 2). Aus 6 wird nach Tab. 3 die Verbindung 7 gewonnen.

NMR-Spektren

Als externe Standardsubstanzen dienten für ¹H-NMR 5 proz. Tetramethylsilan in CCl₄, für ¹¹B-NMR Borsäure-trimethylester.

2a: ${}^{1}H$ -NMR in C₆H₆: ${}^{3}CH_{3}+24$ Hz ${}^{\triangle}_{3}+0.4$ ppm ${}^{\triangle}_{3}10.4$ ${}^{\tau}$; ${}^{3}BH_{4}$ von -265 bis +285 Hz ${}^{\triangle}_{3}-4.42$ bis +4.75 ppm ${}^{\triangle}_{3}5.58$ bis 14.75 ${}^{\tau}$.

 ^{1}H -NMR in CH₂Cl₂: δCH₃ −30 Hz \triangleq −0.5 ppm \triangleq 9.5 τ, $J(^{1}H$ -C- $^{29}Si)$ = 7.0 Hz.

¹¹B-NMR in C₆H₆: δ BH₄ +54 ppm (Abbild. 1), $J(^{1}\text{H}-^{11}\text{B}) = 86$ Hz.

3a: ${}^{1}H$ -NMR in C₆H₆: ${}^{8}CH_{3}$ +20.5 Hz \triangleq +0.34 ppm \triangleq 10.34 τ ; ${}^{8}BH_{4}$ m wie für 2a.

5: ${}^{1}H$ -NMR der flüss. Reinsubstanz: ${}^{8}CH_{3}$ -8.5 Hz $\triangleq -0.14$ ppm $\triangleq 9.86$ τ; ${}^{8}BH_{4}$ m von -260 bis +230 Hz $\triangleq -4.33$ bis +3.83 ppm $\triangleq 5.67$ bis 13.83 τ, $J({}^{1}H$ -C- ${}^{29}Si)$ = 7.0 Hz.

¹¹B-NMR der flüss. Reinsubstanz: $\delta BH_4 + 55$ ppm (Abbild. 2a), $J(^1H^{-11}B) = 86$ Hz. Dieses Multiplett verliert seine Feinstruktur bereits bei -10° (hohe Viskosität der Probe). Abbild. 2b zeigt das Spektrum einer n-Hexan-Lösung bei -40° .

[580/67]